
SCA Deployment Management:
Bridging the Gap in SCA Development

John Hogg, Francis Bordeleau

SCA Deployment Management:
Bridging the Gap in SCA Development

John Hogg, Francis Bordeleau

Abstract: Software Communications Architecture (SCA) systems are based on portable, component-based applica-

tions executing on flexible hardware platforms. The actual assignment or deployment of software components to

hardware devices is done at system initialization time. How can the architect or system integrator ensure that this

assignment will work properly and be fully tested?

This paper answers that question: through modeling, validation, analysis and enforcement of deployments using

automated technology. Deployment management closes the gap between software and platform teams, increasing

quality in fielded systems.

This paper presents a solution to the problem.

The remainder of this section provides background

on the SCA context of deployment management

and goes into more depth on the deployment

problem. Section 2 explains how deployments can

be specified or modeled. Unworkable deployments

can be modeled as easily as valid ones, so section

3 describes deployment validation. Section 4 shows

how the process of finding valid deployments can

be automated. When the desired deployment or

deployments have been selected and verified, section

5 explains how they can be enforced in delivered

systems. Finally, section 6 summarizes this paper

and explains how this technology can be used today.

1.1 SCA software and platform modeling

The Software Communications Architecture (SCA)

enables the delivery of flexible, portable radios and

other devices. The SCA framework is composed of

component-based software applications (also referred

to as waveforms) deployed on a flexible hardware

platform. For an overview of how SCA architectures

can be defined, validated and delivered, see [6]

and [7].

1

1 Introduction

The Software Communications Architecture (SCA) [1]

is a powerful framework for realizing flexible, reusable

component-based applications. Architects specify ap-

plications and hardware platforms as separate profiles,

or sets of XML descriptor files. These profiles describe

the requirements and capabilities of each component,

application, device and platform. Together they allow

sets of applications to be deployed on different hard-

ware platforms with minimal porting effort.

Both application and platform profiles are well-defined

by their descriptor files. Furthermore, sophisticated

modeling tools are available to represent and validate

software and hardware architectures and generate

reliable descriptor file sets. The missing link is the

connection between the two, or the deployment of

application components to platform devices. Current

tools have no representation of the actual assignment

of components to devices and no simple means of

validating the correctness of such an assignment.

The SCA standard has a limited facility for enforcing

a chosen deployment at run time, but it contains

no descriptor file that can be used to enforce such

a deployment. In short, deployment specification,

validation and control has been poorly understood

and poorly supported.

Host

StreamBoard

AudioCard RFBoard

2

Best-practice SCA development includes graphically

modeling applications and platforms to understand

and validate architectures and detailed designs.

The software and platform profiles or sets of XML

descriptor files are generated from these validated

models. An example of an application (the Future

Multiband Multiwaveform Modular Tactical Radio

or FM3TR test waveform [2]) is shown in Figure 1.

This diagram shows components (the rectangles)

communicating through ports (the small black and

white squares) associated with each other through

connections (the lines).

The FM3TR application runs on a platform shown in

Figure 2. A platform forms an abstraction of the process-

ing capabilities available in a system. The platform is a

logical abstraction of the physical processing elements.

A platform can consist out of multiple nodes, each

one abstracting the processing capacity of a specific

1.	This is a sample decomposition of the FM3TR waveform, other decompositions could be considered as well.

Figure 2:
FM3TR Platform

Figure 1: FM3TR Application1

resource1

hci
:Hci

nwk

dlc

mac

phy

resource1

resource1

resource1

nwk
:Nwk

dlc
:Dlc

mac
:Mac

in_from_dlc

out_to_nwk

rx_from_mac
rx_to_dlc

rx_from_ph1

tx_to_ph1

tx_to_mac
tx_from_dlc

out_to_dlc

in_from_nwk

data_out

data_in data_in
:DataIn

data_out
:DataOut

U

U

resource1resource1

resource1

resource1

resource1

resource1

resource1

resource1

U

U

carrier

t_cd_off

t_cd_on

t_cd_off

t_cd_onphy_cd
:Phy_Cd

phy_hci
:Phy_Hci

tx_controlcd_control

tx_inc

rx_inc

crc_inc

rx_controlcontrol

trans_sec

phy_ptt
:Phy_Ptt

voice_in

voice_out

reset

voice_in

reset

trans_sec

carrier
phy_transsec
:Phy_TransSec

mic
:VoiceIn

phy_control
:Phy_Control

speaker
:VoiceOut

voice_out

phy_rx
:Phy_Rx

phy_tx
:Phy_Tx

out

tx

phy_radio
:Phy_Radio

out

in

rx

U

tx

rf_out

rf_freq

rf_in

rf_out

rf_freq

rx_in

antenna antenna
:Antenna

tx_inc

detect

carrier_detect

rx_inc

crc_inc

3

hardware board in the system. The FM3TR Platform

model of Figure 2 is composed of four nodes: Host,

StreamBoard, AudiCard, and RFBoard.

Nodes are in turn composed of devices and managers.

Devices provide resources to applications. Some ex-

amples of these resources might be operating system,

memory, processing power (in MIPS) or throughput.

Managers are responsible for controlling the devices.

The StreamBoard node of Figure 2 is shown in Figure

3. It consists of a four devices (gpp,dsp1, fpga1 and

fpga2) and one manager (devmanstreamboard1).

There are two aspects to a device. First, it is a

physical piece of hardware such as a general-

purpose processor (GPP), field-programmable gate

array (FPGA) or digital signal processor (DSP). A

simple device such as a power supply just runs. The

behavior of a loadable device such as an FPGA may

be controlled through software loaded onto it and an

executable device is a GPP capable of executing code.

These distinctions are important because a physical

device also has a logical device analog. The logical

devices are themselves components and control their

underlying physical devices. The physical devices on

the StreamBoard node of Figure 3 include two FPGAs

and a DSP. These are controlled through their logical

devices that run on the GPP.

But how does the architect or developer know that the

FPGA and DSP logical devices execute on the GPP?

And as a more challenging question, how does the

architect or developer know which of the components

in Figure 1 run on which of the devices in the Stream

Board node or in the other nodes of Figure 2? The

SCA profile XML descriptor files provide full definitions

of each individual application and of the platform,

but these descriptions are all independent. No SCA

descriptor file connects them, the connection happens

during startup of the software on the hardware.

Deployment specification, validation and enforcement

have been the missing links in SCA best-practice

development.

1.2 Deployment

The term “deployment” has multiple meanings. For

example it can mean delivering working systems to the

field. It can also mean physically loading components

(including logical devices) on physical devices. In this

context it specifically means assigning components to

physical devices so they can be loaded and executed.

The deployment of a component to a device is

constrained in many ways. The component has

various needs; for example, it will require a certain

type or family of processor, it may require a particular

operating system, and it may need other capabilities

such as floating-point hardware or certain FPGA

characteristics.

The platform architect can make deployment decisions

up-front because a platform’s logical devices will

execute on the platform itself, and therefore the entire

environment is visible. The SCA allows the user to

specify the physical device where a logical device will

be deployed using a deployondevice element.

If no deployondevice is specified, the logical

device is deployed to the same physical device as the

devicemanager. The platform deployment is therefore

well-understood from the beginning.

Figure 3: FM3TR Stream Board Node

loadabledevice1

resource

deviceManager

log
devmanstreamboard1
:DevManStreamBoard

fpga1
:FPGA

gpp
:GPP

dsp1
:DSP

fpga2
:FPGA

log
:Log

executabledevice1 executabledevice1

loadabledevice1

loglog

log
log

4

By contrast, application deployment to a platform

is not defined either in the platform or the application.

The SCA is designed to support application portability,

so neither the platform nor the application can have

this information. Furthermore, there is no standardized

XML descriptor “deployment profile” to capture this

mapping.

Is the deployment problem really significant? How

many potential deployments can there be? Assignment

of components to devices is exponential, so

•	 6 components and 2 devices have

64 potential deployments

•	 9 components and 3 devices have

19,683 potential deployments

•	 20 components and 4 devices have

1,099,511,627,776 (over a trillion!)

potential deployments

Since a single SDR application can easily have 20

components, a platform usually supports multiple

applications and a platform can easily have half

a dozen devices, these numbers just scratch the

surface.

Of course, many component-to-processor

assignments are clearly unworkable. An FPGA

component will never be able to execute on a GPP

and vice versa. Nonetheless, the problem size is well

beyond the capability of manual analysis for significant

systems.

A valid deployment satisfies SCA deployment

constraints, as discussed later. A verified deployment

has been thoroughly tested. To ensure proper

radio behavior in the field, it is necessary to find all

valid deployments of applications onto a platform,

verify these thoroughly, and ensure that only these

deployments can occur in fielded systems.

1.3 Deployment Management Contexts

How does the architect find, validate and enforce

these verified deployments? Detailed workflows and

use cases will be different for each software radio

builder and vary in difference contexts, but some

basic approaches are common.

Several situations are possible in the delivery of

a software radio platform with a set of applications:

•	 The platform and a set of applications may be

developed together in the delivery of an entirely

new product (a “green field” situation)

•	 A new application may be added to an existing

platform, which may or may not have other

applications

•	 An existing non-SCA application may be ported

to an SCA platform

•	 An existing SCA application may be ported

to a new SCA platform

Each of these situations has unique workflow

aspects and concerns. This paper does not dwell

on their differences, but rather the common issues

of deployment. Special concerns in specific contexts

will occasionally be discussed.

5

2 Deployment Specification

A representation of deployments is a fundamental

requirement for understanding, validating and enforcing

them. Analysis is only possible when there is something

to be analyzed. This “something” is a representation

or model of a deployment, and is natural and

straightforward.

At its simplest, a deployment model is a mapping

from components to devices. Each SCA component

must be deployed at run time on exactly one device.

An SCA component can have multiple implementations

for different platforms or optimized for different

characteristics.

A deployment model can be presented in several ways.

An intuitive browser-like presentation is shown in Figure

4. The example combines the application and platform

of the previous diagrams. A deployment has one or

more applications (here, the single application of Figure

1) containing icons of component instances that must

be deployed. It also has a platform (here, the platform

of Figure 2) containing nodes which in turn contain

devices (some of which were shown in Figure 3).

Finally, the devices contain the component instances

deployed to them. The top part of the diagram shows

the component instances that must be deployed;

the bottom part shows the actual deployment.

The deployment illustrated in Figure 4 is partial. The

“D”s on the component instances in the application

show that they have been deployed onto a device.

Some of the application component instances have

not been deployed; they are lacking the “D” adornment.

A complete deployment has been specified when no

component instances in applications are unadorned.

The gesture for deploying (or redeploying) a component

instance is a natural drag-and-drop. With this interface

the user can quickly specify a full deployment of a

complex platform and set of applications.

Figure 4: Partial Deployment

6

3 Deployment Validation

Of course, the mere fact that a deployment can

be specified does not mean that it makes sense.

Specifying a deployment is easy. Specifying the right

deployment can be much harder.

The number of potential deployments (i.e. assignments

of components to devices regardless of validity) grows

exponentially with the number of platforms and com-

ponents. The vast majority of these assignments are

invalid, because a valid deployment must satisfy a

variety of constraints. Some of these involve a single

component and the physical device on which it’s

deployed; some involve multiple elements, possibly

from multiple applications.

A full description and discussion of deployment

constraints is beyond the scope of this paper.

Examples of general categories of deployment

constraints are:

•	 Environment dependencies of OS and processor:

can the logical device execute the component’s

code?

•	 Allocation dependencies:

is there enough of a quantified resource to

be shared between deployed components?

Are non-quantified resources available?

•	 Host collocation constraints:

are components required to be host

collocated deployed on the same device?

•	 Uses relationships (such as

<devicethatloadedthiscomponentref>,

<deviceusedbythiscomponentref>,

<usesdevice>):

do the required ports and interfaces

exist on the referenced logical device?

For a concrete example, consider one of the cases in the

last category above. An SCA connection end may specify

a port and a <devicethatloadedthiscomponentref>.

Validating this connection in a deployment involves

several steps:

1.	Find the component instance specified

by the <refid> attribute of the

<devicethatloadedthiscomponentref>.

(It may be the component at the other

end of the connection, but may also

be any other component that is part of

the application.)

2.	Find the physical device on which the

component instance of Step 1 is deployed

from the deployment model.

3.	Find the logical device on the platform

representing the physical device of Step 2.

4.	Find a port on the logical device of Step 3

matching the name specified in the connection.

5.	Find the port or interface at the other

end of the connection. It may be another

<devicethatloadedthiscomponentref>,

in which case reiterate the steps above.

It can also be any of the other connection

ends supported by the SCA.

6.	Validate the ports for consistency. Are they

of suitable type (Uses to Provides or Interface)?

Are the IDL interfaces consistent (identical or

compatible through inheritance?)

<Devicethatloadedthiscomponentref> deployment

validation involves only one application. Other deploy-

ment constraints must consider interactions between

multiple applications. Manually finding, validating and

maintaining a validated and verified deployment or set

of deployments becomes increasingly complex as the

number of applications, component instances, devices

and connections grows.

7

Fortunately, it is not necessary to manually validate

a deployment. Deployment constraints may be large

in number and complex to analyze, but they are well-

defined. Deployment validation has been automated.

Using automated validation, an architect or developer

can easily determine whether a deployment will satisfy

SCA constraints.

Of course, a single valid/invalid bit of information

would be of limited help to the user. The user must

know exactly what makes a deployment invalid,

where the error is and perhaps how to fix it. Automated

deployment validation includes navigation to errors

and suggested solutions.

Iterative development is a proven best practice for

all but the smallest of problems. “Big-bang” solutions

result in large, costly errors discovered late. This is

equally true of deployment definition and analysis.

There is no need to specify a full deployment before

validating; it is both possible and highly desirable

to validate a partial deployment. Of course, a partial

deployment will never validate cleanly. The undeployed

component instances will be treated as errors.

When no other errors remain, though, the complete

deployment risk will be significantly reduced.

There are several different approaches to building up

partial deployments, and strategies will vary depending

on whether the applications are under construction or

are being ported from a previous platform. The least

sophisticated approach in a green-fields situation is

to deploy as much as possible as soon as possible:

when a component instance and its target device are

created in the model, add the deployment immediately.

This may be crude, but it will help flag errors and

incorrect assumptions early.

In a porting situation a complete set of applications

and the platform may be available from the beginning,

and a more organized approach will lead the user to

an optimal solution faster. The two main strategies

in this case are application-first and device-first. In

the application-first strategy an entire application is

deployed and validated, possibly in several iterations.

When a good deployment has been selected the next

application is deployed and validated by itself. The

two application deployments are then combined and

validated. This process is repeated until a complete

validation has been constructed.

The disadvantage of an application-first approach is

that critical resource contention may not be discovered

until late in the process. For this reason a device-first

approach may be used separately or in parallel with

the application-first workflow. In device-first deployment,

a device is selected and a set of components from

all applications are deployed to it. If the device has

a scarce resource (such as memory or bandwidth)

this can be detected early and alternatives (such as

redeploying components or even entire applications

elsewhere) can be investigated.

The workflow described above is semi-automated:

the representation and validation of deployment

is tool-based, but the deployment decisions are

entirely manual. It is in many respects a trial-and-error

approach. Further automation can be applied, and

it will be discussed next.

8

4 Automated Deployment Creation

The basic goal of the deployment task is to find a

deployment or set of deployments that will be verified

and ensured in fielded systems. The task of construct-

ing the set of candidate valid deployments can be

entirely manual. It can also be partially or fully

automated.

In principle, finding all valid deployments is simple:

simply construct all potential deployments and

select any that are valid. As we’ve seen, there are

combinatorial reasons why a brute force solution

won’t work. However, clever pruning strategies can

reduce the time required, although analysis will

always be computationally intensive.

When a set of valid deployments has been found, the

user inspects them, selects a set of interesting ones

and saves them as part of the software, platform and

deployment model. They may be the basis of further

evolution as the platform and applications evolve.

Figure 5: Possible Deployments

9

The simplest and most simplistic use of deployment

automation is to create all possible deployments from

a completely undeployed initial state. The resulting set

of valid deployments may be large, however, and it is

advisable to specify a maximum bound on solutions

to report. Furthermore, if the set of valid deployments

is large, then manual effort will probably be needed

after the fact to evaluate their relative merits on other

grounds.

In practice, the creation of valid deployments will not

be entirely automated. The user will start by specifying

at least a few “anchor points” of critical components

to processor devices. These will be used as the basis

of deployment automation: only the deployments that

include the given partial deployment will be presented.

Figure 5 shows the set of possible deployments

given the partial deployment of Figure 4. As each

deployment is selected in the left pane it is displayed

in the right pane. Checking the box beside a set of

deployments and clicking “Add to model” brings them

into the model.

The sheer number of valid deployments may also be

valuable information to the user. It is a clear signal that

deployments must be constrained in some way. Good

practice demands that every fielded deployment must

be tested in the lab.

Automated deployment generation can answer several

questions for the user. The goal is indeed to find a

desirable deployment. However, deployment analysis

may also find undesirable deployments: deployments

that are valid but have bad properties (for instance,

bandwidth issues across the platform). These

undesirable deployments can then be prevented by

profile constraints or by runtime control in Section 5.

4.1 Deployment Analysis as a Porting Tool

The discussion so far has suggested the main problem

is to prune down the discovered valid deployments to

a manageable number. But what happens if no valid

deployments are found?

This is a very real possibility, especially when porting a

set of applications to a new platform. The applications

may have been tailored to specific capabilities of their

original environment. The porting task is to adapt them

to the new platform and its capabilities. This is much

simpler than starting from scratch, but there is no silver

bullet; expertise and judgment are essential.

When no deployment is found, the architect faces

a detective task: what stops the parts from fitting?

Fortunately, a lot of evidence is available. The first

key exhibit is the deployment on the original platform.

Platform architectures will have similarities in their

designs and the architect’s first task will be to

construct a similar deployment in the new environment.

Since no valid deployment was found, this deployment

will not be valid, but it can be validated. The

errors reported in this validation can be critical in

understanding the effort and cost of the entire porting

effort. They identify the gaps in the resources required

by the applications and provided by the platform.

This reinforces the value of deployment management

throughout the development lifecycle, not just at

then end. It’s always cheaper and safer to find and

understand issues early.

5 Deployment Enforcement

Once the architect or system integrator has completed

a full analysis of deployments for the given applications

and platform, one assignment of component instances

to devices can be selected as the golden deployment,

which will then be fully tested.

Unfortunately, the automated analysis described above

might indicate that other deployments are also valid.

Without further control, any of these could occur at

system initialization time. What should the system inte-

grator do to ensure the desired configuration every time?

The ideal answer would be, “Create a standard

SCA descriptor file that will be used to enforce the

given deployment.” Unfortunately, there is no such

descriptor file in the SCA standard. Nonetheless, there

is something close. The ApplicationFactory:

:create() operation includes an optional

deviceAssignments parameter. This specifies a

mapping of component instances to devices.

From there it is a simple matter to define a descriptor

file for each application and assign it a .dep.xml

extension. The deployment of Figure 5 is specified by

the descriptor file of Figure 6 (note that most of the

file has been deleted to conserve space). Just such

a file is generated as part of each application in a full

deployment descriptor generation.

This file is not directly usable by a SCA Core

Framework but can be easily integrated into any SCA

environment. The XML format of the file maps directly

to the IDL format of the deviceAssignments

parameter and this gives the user almost2 full control

over the deployment.

In some cases the user may wish to only partially

control deployment. This gives greater flexibility in

deployments involving additional applications. This is

done simply by generating from a partial deployment.

10

<?xml version=”1.0” encoding=”us-ascii”?>
<!DOCTYPE deployment_enforcement>
<!--Generated by Zeligsoft Component Enabler
 http://www.zeligsoft.com-->
<deploymentenforcement>
 <application id=”DCE:ec08a5aa-fdad-4339-94ab-6f1afd2f729d” name=”FM3TR” />
 <deviceassignmentsequence>
 <!--Component instance hci is deployed on device instance gpp1-->
 <deviceassignmenttype>
 <componentid>DCE:757d7094-0718-458e-95c5-3f34ff071cea</componentid>
 <assigndeviceid>DCE:bb99f471-b19a-4108-87a6-4ed55bad96ab</assigndeviceid>
 </deviceassignmenttype>
 <!--Component instance phy_ptt is deployed on device instance gpp-->
 <deviceassignmenttype>
 <componentid>DCE:a74d83fa-6af9-4036-9206-97e11005a9df</componentid>
 <assigndeviceid>DCE:8d11e069-918f-43ab-aefe-d4fcc96ffe21</assigndeviceid>
 </deviceassignmenttype>
 ...
 <!--Component instance mac is deployed on device instance gpp1-->
 <deviceassignmenttype>
 <componentid>DCE:2ce4a918-f266-4ded-8e6b-cdeba3128abd</componentid>
 <assigndeviceid>DCE:bb99f471-b19a-4108-87a6-4ed55bad96ab</assigndeviceid>
 </deviceassignmenttype>
 </deviceassignmentsequence>
</deploymentenforcement>

Figure 6: FM3TR Deployment Descriptor

2.	The control is “almost full” because the create() parameter does not specify the component implementation to be used in the deploy-
ment. If two valid deployments are available either could be chosen. This will not happen in common SCA development practice.

6 Summary

Deployment modeling, validation and enforcement

has truly been a missing link in SCA development;

there have been no tools or even approaches and

vocabulary to answer the questions that architects,

developers and system integrators face. This paper

described how deployments can be specified,

how they can be automatically validated, how valid

deployments can be generated, and how desired

deployments can be enforced in fielded systems.

Automated support for all these aspects is available

today in Zeligsoft Component EnablerTM (CE) 2.0. With

CE 2.0, the SCA team can close the gap between

platform and software developers to deliver a reliable,

trusted system. For more information on how you

can apply this technology to your project, go to

www.zeligsoft.com or contact sales@zeligsoft.com.

6 References

1.	JTRS	

Joint Tactical Radio System (JTRS) Joint Program

Office, Software Communications Architecture Speci-

fication V3.0, August 27, 2004. http://jtrs.army.mil/

sections/technicalinformation/fset_technical_sca.html

2.	DERA

FM3TR Decomposition

http://www.computing.surrey.ac.uk/personal/pg/

E.Willink/wdl/Fm3tr.html

3.	OMG

Interoperable Naming Service Specification,

November, 2000. ftp://ftp.omg.org/pub/docs/formal/

00-11-01.pdf

4.	OMG

UML 2.0 Superstructure Specification (convenience

document), October 8, 2004. http://www.omg.org/

cgi-bin/doc?ptc/2004-10-02

5.	Raytheon

Joint Tactical Radio System (JTRS) SCA Developer’s

Guide, June 18, 2002. http://jtrs.army.mil/sections/

technicalinformation/fset_technical_sca.html

6.	Zeligsoft

Mark Hermeling, John Hogg and Francis Bordeleau,

Developing SCA Compliant Systems, 2005

http://www.zeligsoft.com/Technology/Resources.asp

7.	Zeligsoft

Mark Hermeling, John Hogg and Francis Bordeleau,

Component Enabler Best Practices: SCA, 2005

http://www.zeligsoft.com/Technology/Resources.asp

11

Zeligsoft, Zeligsoft CE and Waveform Builder are trademarks of Zeligsoft Inc.
All other trademarks are the property of their respective companies.
Version 1.1
Printed in Canada © Copyright 2005.

Contact Information

Website: www.zeligsoft.com

Email: info@zeligsoft.com

Toll-free (North America): 1-800-ZELIGSW (1-800-935-4479)

Direct dial: +1 819-684-9639

