
Mark Hermeling, John Hogg, Francis Bordeleau

Developing SCA
Compliant Systems

Developing SCA Compliant Systems

Mark Hermeling, John Hogg, Francis Bordeleau

Component-based software development, deployment and configuration for Software Defined Radio using the

Software Communications Architecture (SCA) has seen an increased interest in the past few years. Companies

are actively starting to build more and more radios that adhere to the SCA standard. Platform vendors are also

incorporating the standard into their portfolio.

This paper provides an introduction to the SCA and highlights the goals it is trying to achieve and the technology

it uses. The technology puts many challenges in front of the developers of systems. This paper highlights these

challenges and their inherent pitfalls.

Model Driven Architecture (MDA) is an initiative from the Object Management Group. MDA introduces models as

the primary artifact of development and promotes modeling in favor of coding. This paper shows how MDA and tool

automation can meet the challenges associated with SCA based development.

1 INTRODUCTION

The United States Department of Defense (DoD) requires

that all radios delivered to any of the armed forces

adhere to the Software Communications Architecture

(SCA) [SCA] standard. The vision of the DoD is to

develop a state-of-the-art, economical communications

facility for the armed forces that will allow all branches to

cooperate.

The main goal of the SCA is to reduce cost and

increase interoperability. Software Defined Radios

(SDRs) developed using the SCA can be upgraded and

extended both from the hardware and the software side

of the radio.

This is very beneficial for the DoD, the user of the radios.

It also benefits the producers of the radio, who have a

stable, proven standard to build their systems with and

can readily depend on existing tools and platforms.

However, some extra work is required to make the radios

compliant with the standard.

This paper introduces the technology that the SCA

uses at a high-level. It covers the responsibilities of the

developers of the radio. It highlights what is needed to

make the radios compliant and some of the bottlenecks

and difficulties that can arise in the development process.

It also introduces ways to overcome these difficulties by

using Model Driven Architecture (MDA) techniques and

tool-driven automation.

2 TECHNOLOGY

The SCA addresses component-based systems that

require a high-level of platform independence. These

systems need a way to query available hardware (devices)

in order to deploy needed resources (software). This

requires much coordination between the software and the

hardware.

The SCA introduces

n	 A separation between application (software) and

platform (hardware drivers) based on componentization

of the entire system

n	 A Component Framework that addresses coordination

n	 An API that allows for standardized communication

between the Core Framework, components, and devices

n	 A descriptive language that describes the application

and the platform, and their relationships using XML

n	 A communication layer that allows for seamless

communication

n	 An operating system standard that provides services at

the lowest level

1

This paper looks at each of these individually and

introduces their significance in the larger picture. The

paper concludes with a high-level overview of how an

SCA system is deployed during run-time.

2.1 Application and Platform

The SCA makes a distinction between application and

platform, software, and hardware drivers respectively.

The application is defined by individual components.

Each component provides a certain amount of

functionality. Interconnecting the components into

an application comprises the complete system

functionality.

A component has a well-defined interface that specifies

what services it provides and what services it requires

from other components. Connections between com-

ponents are considered to be part of the application

and are created dynamically during deployment.

The platform defines the hardware that the components

can use. The platform is built through drivers, which are

software representations of the real hardware elements.

The SCA refers to these drivers as devices.

Components may have requirements; for example,

a certain component may require 10 Mb of RAM or 5

MIPS of processing power. Alternatively, a component

can request a specific type of Field-Programmable Gate

Array (FPGA) or general purpose processor.

The goal here is independence. It should be possible

to run an application on multiple platforms, as long

as the platforms fulfill the application requirements.

Alternatively, it should be possible to run multiple

applications on one platform.

The components and platform together form a high-

level, implementation-independent description of the

system. They describe what the individual pieces of the

system are, rather than how the system works in detail.

This system description is used by the Component

Framework to load components onto devices

and execute the system. See section 2.3 for more

information.

2.2 XML Descriptors

Components, devices, applications, and platforms are

described using a set of XML descriptor files that have a

well-defined syntax. These files contain information about

the external interfaces of the components and devices,

their implementations, and how they are connected to

form applications and platforms. In short, the descriptor

files contain all the information that is required to deploy

and configure an application on a platform.

The complete set of descriptor files is referred to as the

Domain Profile, which consists of the set that describes

the application (the Software Profile), and the set that

describes the platform (the Device Profile). The Domain

Profile is a key factor in the deployment and configuration

of a component-based system.

The Domain Profile contains a large amount of

information. Large systems can have tens of thousands

of lines of XML code spread over hundreds of files.

2

2.3 Component Framework

The Component Framework is responsible for deploying

and configuring applications, and for managing the

application and the platform. It reads the information

in the Domain Profile at startup and tries to deploy

the application to the platform, while adhering to the

relations in the Domain Profile.

In short, the Core Framework knows how to download a

component to a device, connect components together

so that they can communicate, start and stop the

component, and deal with error conditions. It takes

care of management tasks so that the components

themselves do not have to deal with them.

The Component Framework is referred to by the SCA

as the Core Framework (CF) and is the core part that

guides the run-time deployment of a system.

2.4 API

The CF needs to communicate with all the elements in

a system – both application and platform. To do this,

certain basic interfaces have been prescribed. The SCA

specifies the interfaces that a component and a device

are required to implement.

The interfaces cover aspects of dynamic deployment,

such as where the Core Framework queries the

platform to see which components can be loaded on

which device. The interfaces are also used to connect

component instances together during runtime, to start

and stop them, and to do some event handling and

logging.

One of the goals of the SCA is also to increase inter-

operability between components. To achieve this,

certain domain-specific APIs have been designed. The

domain- specificinterfaces deal with concepts such

as antenna configuration, sending and receiving data

streams, and so forth.

2.5 Communication Layer

The communication layer provides abstraction from the

physical act of communication to the Core Framework,

the devices, and the components. Software Radios

frequently consist of multiple physical processing

devices that provide processing functionality.

Communication needs to be possible between

components and devices that reside on the same or

separate processors.

The SCA has chosen the industry proven CORBA

[CORBA] communication layer to provide the

messaging. Every SCA compliant radio has a CORBA

compliant ORB incorporated into it.

2.6 Operating System

The operating system is the lowest layer of software

abstraction on most embedded systems. It harnesses

the power of the processor and provides services to the

processes running on top of it. The operating system

provides the lowest level of hardware abstraction and

provides services for task switching, semaphores,

memory management, and so forth.

The SCA states that the operating system needs to be

POSIX compliant. This means that software that was

written for operating system A can be recompiled and

run on operating system B.

3

3 CHALLENGES

The SCA standard provides a number of benefits to

both the user and the developer of radio systems.

However, complying with the standard is not a trivial

affair. This section introduces a number of challenges

that need to be met when building SCA compliant

systems.

3.1 Architecture

The system architecture details who talks to whom

and what they say to one another. It describes how the

system is divided into an application and a platform.

It describes how the components in the application

are connected to each other and to the devices in

the platform. It also describes the platform with the

connections between the devices.

The architecture is defined during high-level system

design. The architect team divides the system into

components, which are individually handed off to

separate teams for construction.

An SCA based system is like any system; however,

there are a number of areas related to the system

architecture where some difficulties arise – most notably

in the areas of visualization, platform independence,

and correctness.

Visualization

The system architecture needs to be communicated

within the development team. This is best done through

diagrams. Diagrams can be made on white boards, or

with Microsoft Visio, PowerPoint, or modeling tools.

The SCA domain differs in that none of the tools

mentioned above allow users to add SCA specific

detail to the architecture. Elements such as component

instances, assembly controllers, ports and interfaces,

connection attributes, and many other properties cannot

be set or directly indicated.

An architecture without these SCA specific properties

is incomplete and could potentially lead to misunder-

standings amongst development teams.

Platform Independence

The SCA goes to great lengths to provide platform-

independent modeling. This means that it is possible

to define an application and a platform independent

of each other. A component in the application can

then have relationships with certain aspects it requires

from a platform. Multiple platforms might satisfy these

relationships.

Expressing and visualizing platform-independent

relationships correctly requires detailed knowledge of

the SCA.

Correctness and Compliance

Once the architecture has been specified, it needs to be

analyzed for correctness and compliance. For example,

take a connection between components in the appli-

cation. The ports on the components on both ends of

the connection need to have compatible interfaces.

Another example is ensuring that all the SCA required

data has been provided, including properties such as

the CORBA version and the assembly controller set-

ting for the application.

4

3.2 Descriptors

An SCA compliant system is described by a set of XML

descriptor files. These files provide detailed information

about each of the components and devices, and

how they are connected to form the application and

platform. These descriptor files contain many references

between components and devices and are rather

complex to write.

As an example, the application starts with the

Software Assembly Descriptor (SAD), which specifies

component instances that are each described in their

own component description files. The connections in

the SAD refer to properties on components that refer

to properties on devices, which are contained in the

device descriptors. Collectively, the set of descriptor

files can contain over a hundred files and reach sizes

into the tens of thousands of lines.

The challenge with the descriptor files lies in the

complex syntax and the cross-references between files.

Authoring these files is a very time-consuming and

error-prone activity.

3.3 Integration

One of the goals of the SCA is to enable component

sharing between projects, including COTS (Commercial

Off-the-Shelf) applications, components, devices, and

platforms. A COTS component is delivered as a number

of executables, together with the XML files that describe

the executables.

Integration of COTS components into an application

requires users to understand the interface of the com-

ponent and the different uses that might be made of

the component. This requires a thorough reading and

understanding of the XML files. As indicated in section

3.2, this is not a trivial exercise.

3.4 Conclusion

Most of the challenges that the SCA poses can be

compared to the challenges faced with writing source

code. We need to model the source code to understand

how the different source modules are related. We need

compilers to verify integrity and to ensure one source

module makes correct use of another.

These challenges increase the chance of costly errors

that can linger in the software development cycle and

only become apparent when the system is tested. Some

examples are integration problems due to incorrect

interfaces on components or incorrect descriptor

files. Some of these problems can be costly to find

— debugging embedded systems is an expensive and

resource- consuming activity.

4 SOLUTION

The challenges of building SCA compliant systems

can be met through visual modeling and automation.

Visual modeling has been gaining popularity in recent

years. Combined with automation, visual modeling

can provide significant benefits, including support for

engineers building SCA compliant systems.

Visual modeling displays information about the com-

ponents and devices that users are working with in a

visual paradigm. Automation means that tools perform

the work. Users perform less manual work in areas such

as content validation of the model or generation of the

descriptors.

5

4.1Model

Visual depictions of components, devices, and the

connections between them increase the engineer’s

understanding of the system. They prevent misunder-

standing and improve communication.

The diagrams can also be used as a basis for system

documentation.

4.2 Validate

Once the model is created, it needs to be validated.

As previously stated, the SCA standard defines many

rules and regulations that the system needs to meet.

Examples of these regulations include attributes (which

have to be set to one of several allowable values), and

application-to-platform relationship evaluation.

Validation is an important aspect of modeling. It

is comparable to syntax checking source code. A

model with errors is like a piece of C code that does

not correctly compile. It means that the system is not

correctly described. Further work with the model can

lead to undefined behavior, for example, during down-

load and execution. These undefined behaviors can be

very difficult to find during testing.

Furthermore, a model that does not correctly validate

does not adhere to the standard. This means that the

system might not pass certification test by JTEL, the

JTRS certification authority [JTRS].

4.3 Generation

Generation is a direct extension of validation. A model

should contain all the information that is available about

the SCA aspects of the system. With this information

present, validation provides a useful statement on the

compliancy of the system. The information can also be

used to automatically generate correct-by-construction

XML descriptors for the system.

Generation removes the tedious and error-prone step of

manually writing the XML descriptors.

6

Figure 1 shows a model of an application. The diagram

combines information from about ten different XML

files. The diagram allows an engineer to understand

the content of the application with minimal effort and

minimal time.

However, modeling is more then just diagrams. A good

visual modeling tool contains a related hyperlinked set

of the elements that together contain all the information

needed for the entire system. This hyperlinked set of

elements is usually referred to as the model. The fact

that the model is hyperlinked allows for easy navigation

through the model space. Users can navigate through

diagrams and relationships. Easy workflows let users

locate all the information that comprises the model

space.

Figure 1: Visual model of an application

5 ZELIGSOFT CE

Zeligsoft Component Enabler [ZSFT] is a visual

modeling tool that provides the facilities for users

to conveniently model, validate, and generate SCA

compliant systems. It provides a user-friendly, model-

based workflow to define components and applications,

devices and platforms.

The next section walks through some of the features

and benefits of CE.

5.1 User-Friendly Interface

Users of a model-based development tool like CE

spend substantial time navigating through dialogs,

windows, diagrams, and menus. The CE User Interface

allows for simple navigation. It puts all the functionality

and power of tool automation at the user’s finger tips.

5.2 UML-Based Approach

The modeling paradigm behind CE is based on version

2.0 of the industry standard Unified Modeling Language

[UML]. UML 2.0 offers platform-independent modeling

and structure diagrams that show run-time communi-

cation links between instances.

Many software developers are familiar with the UML and

hence are able to use CE with a minimal learning curve.

5.3 Provides SCA guidance

The SCA is a standard with many rules that are not

necessarily intuitive, especially to new users. A thorough

understanding of the standard is needed to design

SCA-compliant applications and platforms, and to be

able to write the correct set of XML descriptors that

specify them. CE removes the need to be an XML

expert through its validation and generation feature. The

tool guides users through the pitfalls of the standard

and highlights elements that are missing or in violation

of the standard.

Once the model is defined, the generation feature

generates the set of required XML descriptor files. The

generated descriptor files are correct-by-construction,

which removes costly debugging sessions resulting

from typing errors or misunderstandings of the

standard.

5.4 XML Import

Integration of COTS or legacy components is

an important part of the construction of an SCA

compliantsystem. CE can import the XML descriptor

files from COTS or existing SCA components. CE offers

drag-and-drop functionality to bring the component into

the system. An added benefit of the XML Import feature

is that the XML is validated. Any potential errors in

syntax or semantics of the XML are highlighted.

5.5 Documentation Generation

SCA based systems require thorough documentation

of the application, platform, components, and devices.

The model already contains all the information about

the system. CE allows users to generate documentation

straight from this model.

Using templates, the documentation generation feature

lets users specify the layout, content, and format of the

documentation.

5.6 Increased Speed and Quality

A modeling tool like CE provides a more efficient

workflow for users. Users are guided through SCA

requirements, so they make fewer mistakes. Generating

XML descriptors through a model-based flow is

approximately 10 times faster than manual descriptor

authoring. Development times are shortened and

system quality is increased.

7

Software developers take pride in their work and enjoy

working with state-of-the-art modeling tools like CE. It

allows them to deliver better work faster and removes

the frustrating task of manually authoring XML code.

Developers with high-quality tools deliver better results

more quickly. Job satisfaction is higher, so employee

turnover is lower. Developers that are familiar with the

SCA are difficult to find and train. CE eliminates these

concerns.

6 CONCLUSION

Developing SCA based systems requires extra effort

and coordination from the development team. However,

this extra effort is well worth it. The SCA promises easy

maintenance, portability, interoperability, and use of

COTS systems.

Visual modeling tools and automation help developers

stay on track, shorten development time, and increase

software quality. Tools provide the flexibility to work within

the SCA standard.

Zeligsoft CE provides all the functionality needed from a

good visual modeling tool – an intuitive User Interface,

SCA guidance, importation, validation and generation of

documentation and descriptors are all aspects that are

important to users.

7 REFERENCES

n	 SCA

	 Software Communications Architecture

	 http://jtrs.army.mil/sections/technicalinformation/

	 fset_technical_sca.html

n	 JTRS

	 http://jtrs.army.mil/

n	 UML

	 Unified Modeling Language

	 http://www.uml.com

n	 CORBA

	 http://www.corba.org

n	 ZSFT

	 Zeligsoft Inc.

	 http://www.zeligsoft.com

8

Zeligsoft, Zeligsoft CE and Waveform Builder are trademarks of Zeligsoft Inc.
All other trademarks are the property of their respective companies.
Version 1.1
Printed in Canada © Copyright 2005.

Contact Information

Website: www.zeligsoft.com

Email: info@zeligsoft.com

Toll-free (North America): 1-800-ZELIGSW (1-800-935-4479)

Direct dial: +1 819-684-9639

