
Component-Oriented Engineering
... the dawn of a new era in embedded software

development productivity

Francis Bordeleau and Ross MacLeod

Zeligsoft

May 2008

Component-Oriented Engineering

… the dawn of a new era in embedded software development productivity

Francis Bordeleau and Ross MacLeod

1

1 Background

Component-Based Development (CBD) is now well

established in the IT industry. Leading component-

based technologies include J2EE, Microsoft .NET

and IBM Websphere. A component is an encapsulated

unit of functionality with a well-defined interface

that allows it to connect to other components, and

be independently deployed. Component-based

applications are defined by assembling components.

The main benefits associated with component-based

technologies include: reduced system development

time and cost, enhanced quality, and reduced system

evolution and maintenance cost. Over the past decade

as standard component-based specifications have

been developed, the importance of CBD has grown

rapidly in the embedded system industry. Examples

include both industry independent specifications

such as the CORBA Component Model (CCM)

and OSGi, as well as domain-specific specifications

such as the AUTomotive Open System ARchitecture

(AUTOSAR) in the automotive industry and the Software

Communications Architecture (SCA) in the Software

Defined Radio (SDR) industry.

Other industry segments like telecommunications and

consumer electronics have been using component-

based technologies without adopting standard

specifications.

Coincidently, Model Driven Development (MDD)1

has gained popularity with pioneering efforts from

companies such as Rational, ObjecTime, Telelogic

and I-Logix. The term MDD refers to a variety of devel-

opment approaches that are centered on the use of

software models as a primary form of expression.

Improving embedded software development productivity is rapidly becoming the overwhelming mantra of product

companies across a wide range of industries. The increasing importance of software to the value of products in

such diverse industries as automotive and consumer electronics has lead to a huge growth in embedded software,

as well as a corresponding growth in delivery and quality challenges. Recognizing the need for new software

development approaches to successfully address these growing challenges, industry is increasingly looking to

modeling and software component technologies to help them succeed. Industry specific component frameworks

such as the Software Communications Architecture (SCA) for software defined radios, and AUTOSAR (AUTomotive

Open System ARchitecture) for the automotive industry, are being promoted as a means of moving towards

an integration model of development in order to improve productivity and quality. Within this context, applications

may be largely assembled from pre-existing components, rather than being developed each time from first

principles. Model Driven Development (MDD) and Component-Based Development (CBD) have promised such

a paradigm for some time, but have not fully delivered on that promise. This paper cites some reasons for the gap

within the embedded software domain and proposes a new approach to help organizations realize the promise.

.

1. The OMG has coined the term Model Driven Architecture (MDA) to refer to a variety of model-based development techniques built
around UML and model transformation techniques. MDA introduces the concepts of Platform Independent Model (PIM) and Platform
Specific Model (PSM). The transition between PIM and PSM is achieved using well-defined reusable model transformations.

2

Models can be analyzed and validated, and code

may in turn be generated from the models, which

range in completeness from system skeletons to

fully deployable products.

Industry has, however, been slow to embrace these

technologies despite their promise to significantly

improve developer productivity. Concerns with key

issues, like scalability, performance and runtime

overhead, and imposed programming models,

has led those with demanding system performance

requirements to opt for the status quo and to continue

to use custom tailored and handcrafted solutions.

Zeligsoft has been focused on CBD and MDD since

its founding in 2002. The company is led by a group of

industry veterans who have been leaders in these fields

over the past couple of decades, and collectively they

have logged over 100 years of experience. Zeligsoft has

witnessed the typical challenges with these approaches

and has defined a methodology — referred to as

Component-Oriented Engineering — and a toolset to

address these shortcomings and unleash the full power

of model driven and component-based development

within the embedded software space.

2 component-oriented

 engineering (coe)

Component-Oriented Engineering is a software

development methodology focused on addressing

the challenges of complex embedded systems

characterized by distributed applications and

heterogeneous multiprocessor platforms2. COE

derives its inspiration and key attributes from

three main sources:

n Component-Based Development (CBD) —

COE has been created to support the development

of component-based software through the entire

development process. COE directly addresses

development issues associated with component

definition, application design, application deploy-

ment on platforms, and testing at different levels.

n Model Driven Development (MDD) — COE is an

advanced MDD methodology for embedded systems.

It is centered on the use of models to specify the

different system aspects. COE provides capabilities

to analyze and validate system properties early and

often in the development process, and provides

advanced generation capabilities that automatically

generate optimized code, XML descriptor files,

documentation and other types of models.

n Agile Software Development (ASD) — COE

builds on the core principles of ASD to provide a

user-centric, lightweight methodology that enables

developing software in a highly iterative fashion,

driven by a test-based approach to ensure quality

and reduce risks usually associated with conventional

development methodologies.

COE is agnostic with respect to the approach used to

specify behavior models, and is open to any behavior

model that respects the defined protocols and platform

constraints. It thus enables greater reuse of existing

software assets.

Additionally, because of the key importance of QoS

in embedded systems, COE places a strong emphasis

on this aspect — in particular real-time and performance

properties. As such, support for QoS analysis and

validation form an integral part of the methodology

and are used throughout the process.

Component-Oriented Engineering is unique in terms

of its:

1. Explicit support for a platform concept

2. Scenario-driven development approach

3. Use of domain specializations to support

customization

2. Platforms are heterogeneous with respect to processors (single-core, multicore, GPP, DSP, FPGA), communication mechanisms,
RTOS, middleware, etc.

3

2.1 platform concept

Component-Oriented Engineering is unique in its

formal recognition of platforms as first class objects

within the methodology. Other methodologies may

implicitly acknowledge platforms through the use

of concepts, such as Platform Independent Models

(PIM) in MDA, but only COE requires that developers

recognize a platform entity and manage relationships

between applications and platforms via another

important concept — that of a deployment. Within

COE, the deployment process is an integral part

of the overall development process and is no longer

simply a post-development activity3. The integration

of application, platform and deployment enables

advanced model analysis and validation. In particular,

this facilitates rapid “what-if” analysis of alternative

target configurations. In this way the developer can

easily tune the application early, rather than suffering

the costly implications of performing these changes

late in the product life cycle. These analysis and

validation capabilities are critical to ensuring a

degree of correctness that is required in mission

critical applications.

Moreover, detailed platform and deployment informa-

tion is necessary to drive high-performance automated

model transformations (such as code generation)

that are key to meeting the performance requirements

demanded in many embedded applications, while still

achieving the productivity gains expected from higher

level domain representations.

3. In reality most methodologies require the developer to make deployment related decisions early in the development cycle. These
decisions are reflected in the architecture/design that then make it costly to evolve implementations to accommodate new platforms.

Figure 1: Component-Oriented Methodology overview

Feedback loop
for iterations

Domain
supported
analysis &
validation

Component
Library

Domain
Specialization

Architecture /
Design

Configuration
& Deployment

Code
Generation

Execution
& Monitoring

Domain

Platform

Model
Framework

Platform
Intel

Model
Framework

Platform
Intel

Domain Library

Domain
supported
analysis &
validation

Application

Deployment

Sequence Diagrams (SD)

Platform

Model
Framework

Platform
Intel

Model
Framework

Platform
Intel

n A domain is selected
from the library,
or tailored for the
specific development
environment and/or
required platform

n Scenarios developed in
SDs generate the system
level component spec,
with components selected
from the component library
or created as required

n Alternative behaviour implementations
are used to refine (complete) the
components

n A configuration and deployment process
assigns components to processing
elements and/or provision services

n Code is generated
from validated
deployments
using Deployment
Aware Generation
(DAG)

n Code is compiled using
native compilers spec’d
in the Domains, and
then delivered to the
target where execution
and monitoring begin

 0101010101
1010101010
 0101010101
1010101010
 0101010101
1010101010

Alternative
Behaviour
Implementations

Platform

4

4. A complex embedded system typically uses many different middleware layers.

application

Applications in COE are created by assembling

a set of components and providing connections

between compatible ports (formal interfaces)

on adjacent components. Using MDD techniques,

individual components and the overall application

model can be validated for correctness at any

point in the development process.

platform

Complex embedded systems are built on hetero-

geneous platforms that are composed of multiple

layers, each layer addressing a different aspect of

the overall system. Typical platform layers include

a hardware layer composed of different types of

processors (GPP, DSP, FPGA), memory buses and

interconnections, and the RTOS layer and middle-

ware layers4 that provide services to application

components. Similarly to applications, platform

layers can be individually defined in a component-

based manner. The component model can also

be used to analyze and validate the configuration

and generate code and configuration files.

deployment

One of the core innovations — and benefits —

introduced by COE is the ability to graphically

manage deployments as part of the development

process. This supports a unique exploratory

approach to refining target/deployment choices

in order to optimize the product according to

specified engineering goals. A deployment is an

allocation of application components to platform

(software or hardware) level components. Similarly

to applications and platforms, deployments can be

modeled and validated. Resources required by the

application components can be assessed against

those provided by the platform components and

a determination made about the correctness of

the deployment. Further, the deployment is the first

design element from which code and other related

artifacts can be generated for the application and

optimized for the allocation decisions.

domain

Customization of the COE development enviro-

ment is provided by domains, which tailor the COE

framework for platform intelligence and component

model frameworks. Platform intelligence contains

rules and parameters to support static analysis

and validation that is essential to achieving the

QoS objectives of many embedded applications.

Component model frameworks further refine the

modeling rules and basic constructs. Domains

also include model transformation engines that

correspond to the selected component framework.

Some examples of component frameworks are the

Software Communications Architecture (SCA) for

software defined radios, AUTOSAR for automotive

and the CORBA Component Model (CCM).

5

2.2 Scenario driven

COE’s scenario-driven approach plays a central role

in facilitating a more productive and “correctness-

focused” approach to development. Two distinct

types of scenarios are supported:

n Test scenarios

n Deployment and configuration scenarios

Test Scenarios: Test scenarios supported by

sequence diagrams may be used to build the speci-

fication for components as well as their interactions

with other components. These may then be used to

drive the creation of automated test suites which may

also be used to provide automated regression suites,

component test suites and/or system test suites. As

in Agile Software Development (ASD) this approach

to early specification and use of test cases tends to

be more effective and less expensive than traditional

test approaches.

Deployment and configuration scenarios: Perhaps

the most novel aspect of COE — the platform deploy-

ment process — enables the developer to rapidly

explore the implications of different configurations

early in the life cycle. This helps avoid costly mistakes

and save weeks of development and re-design effort.

In a world of increasingly distributed architectures

(e.g. multicore processors), exploring alternative

deployment scenarios in this way offers a powerful

mechanism for dealing with the added design com-

plexity associated with these complex distributed

systems. Moreover, this process allows the designer

to quickly determine the performance implications

of different allocations.

In addition to the usual configuration options, COE

also allows different behavior models/implementations

to be plugged into a component over the product’s

development life cycle — as long as the behavior com-

plies with the component interfaces and constraints.

The software engineer may start with a high-level

prototype (or stub) to be followed by a more complete

and/or efficient implementation later in the cycle.

Deployment and configuration scenarios provide the

developer with powerful mechanisms for early and

tangible feedback on design effectiveness. Together

with test scenarios, this approach supports the iterative

and “test early; test often” principle of Agile Software

Development.

2.3 domain Specialization

One challenge for any development methodology

and tool is that in the real world there will always

be numerous component model frameworks as well

as company specific variations. How can one develop

a methodology and tool suite to practically support

this variety? This challenge is further exacerbated by

the multitude of platforms that must be understood by

the tool in order to produce efficient implementations

that are required by the embedded market.

In order to tackle this challenge, COE incorporates the

concept of domains, where a domain is an entity that

encapsulates specific platform knowledge, component

framework information and associated transformation

engines. Domains can then be specialized to accommo-

date a specific target platform as well as a component

framework such as AUTOSAR, SCA, or CCM. Moreover,

domains may be further specialized to accommodate

any industry standard component framework.

Domains are used to complete the COE framework

in order to provide a modeling and design solution.

3 proceSS integration and

 Life cycLe Support

To maximize productivity improvement and facilitate

adoption of the methodology, COE was designed

to integrate smoothly with existing development

processes. COE incrementally adds a component-

driven aspect to the existing system/software devel-

opment methodologies and processes. Moreover,

it is agnostic with respect to the approach used to

implement the components (code). This means that

component developers can choose to implement

6

components using an MDD approach or a code-

centric approach, and they can select different

programming languages, like C, C++ or Java,

depending of the type of component.

From a life cycle perspective, COE focuses on

the component-based aspect of the entire product

development life cycle, including component defini-

tion, system integration, and testing from individual

components to integrated systems. It integrates

with existing methods and tools to provide support

for the other development aspects such as require-

ments management, component implementation

and version control.

4 coe addreSSeS typicaL md/cBd

 ShortcomingS

Three commonly cited reasons for not adopting MDD

or CBD technologies, despite their substantial promise

of improved productivity, are:

1. Scalability issues

2. Inefficient code (implementations)

3. Awkward and/or restrictive programming

models that compromise productivity

Component-Oriented Engineering embraces the key

elements of MDD and CBD and further extends them

with novel capabilities that significantly leverage the

productivity benefits of these approaches. In addition,

COE and the Zeligsoft toolset effectively address

these three concerns most often raised over adopting

any of these methods.

Figure 2: Screenshots from

the Zeligsoft implementation of

Component-Oriented Engineering

7

Scalability: Veterans of the MDD industry have

developed the Zeligsoft toolset. They have designed

the Zeligsoft development environment from day one

to ensure scalability. This is important because it is

very difficult to re-engineer a tool suite for performance.

Innovative UI models have been adopted to help

effectively manage the browsing of very large designs.

Inefficient code: Platform intelligence that is embed-

ded in the domain specializations, combined with

the COE deployment process, provide the necessary

information from which very efficient code can be pro-

duced. The Zeligsoft implementation of COE incorpo-

rates a patented, Deployment-Aware Generation (DAG)

capability that has proven its ability to generate very

efficient code in demanding customer environments.

Restrictive programming models: COE is open to

any programming model and tool that the developer

wishes to use to specify component behavior. In fact,

it is even possible to define and implement a proprie-

tary programming model using domain specializations.

Moreover, COE can be easily incorporated into virtually

any life cycle development methodology that is in

use in the organization, thus helping to improve its

acceptance in organizations with well-established

methodologies and processes.

5 the future of coe

Over 20 years ago, object-oriented programming

offered the promise of greater development efficiency

via increased software reuse. Programs would be

composed from a collection of reusable software

objects and classes. Decoupling of data from pro-

cedures, along with proper encapsulation, intended

to achieve massive reuse and “the industrialization

of software development”. These changes alone,

however, proved insufficient to launch the world

of massive reuse that many had envisioned5. COE

progresses the state of the art, by focusing on the

structural aspect of software that is fundamental

to achieving effective reuse.

It is essentially agnostic with respect to the type

of behavior modeling that is adopted, and it treats

platforms as first class entities within its modeling

framework in order to ensure the performance and

correctness that is required in embedded systems.

COE leverages the abstract modeling benefits of

MDD and formal model transformations in order

to support static analysis, validation and automated

generation of tests and code.

With support from the Object Management Group

(OMG) and some very influential industrial partners,

acceptance of Model Driven Development has

increased tremendously over the past several years.

MDD as well as Component-Based Development

have taken root across the entire embedded software

development industry as evidenced, in part, by the

increase of industry standard component frameworks

and modeling languages such as AUTOSAR (auto-

mobile industry), SCA (software defined radios),

MARTE (real-time UML) and others.

COE has the potential to dramatically transform

embedded software development from an exercise

of creation from first principles, to one of assembling

solutions from a set of reusable components, inventing

new components to fill specific needs. The potential

to more effectively leverage the creative powers

of talented developers, reduce development costs,

reduce product defects and gain time-to-market

is truly exciting.

5. Brad J. Cox, November 1990, Planning the Software Industrial Revolution

Information about Zeligsoft can be found at

www.zeligsoft.com or contact sales@zeligsoft.com.

referenceS

1. Crnkovic, I., Larsson, S., and Chaudron, M.,

“Component-based Development Process and

Component Lifecycle”. Journal of Computing

and Information Technology 13 (4), P: 321-327

(November 2005).

2. Schmidt, D.C.. “Model-Driven Engineering”.

IEEE Computer 39 (2), P: 25-31 (February 2006).

3. Agile Alliance. “Agile Software Development

Manifesto.” 13 Feb. 2001 www.agilemanifesto.org.

8

Zeligsoft, Zeligsoft CE, Zeligsoft CX, and DAG are trademarks of Zeligsoft Inc.
All other trademarks are the property of their respective companies.
Version 1.2 Printed in Canada © Copyright 2008.

Contact Information

Website: www.zeligsoft.com

Email: info@zeligsoft.com

Toll-free (North America): 1-800-ZELIGSW (1-800-935-4479)

Direct dial: +1 819-684-9639

