
Code Generation for SCA Components

Mark Hermeling





Code Generation for SCA Components
Mark Hermeling

The definition and coding of a component that makes up part of an SCA system requires detailed knowledge of 

the SCA standard, and continuous attention to the external interface of the component. SCA specific coding tools 

and automation used in the development process can make component development much more manageable 

and can thus accelerate SCA development, and improve software quality.

This paper provides an overview of the source code requirements for an SCA component, and the design 

considerations that should be taken by the developer. This paper then describes how SCA artifacts can be 

automatically generated from a component definition built with a UML 2.0 compliant visual modeling tool, and 

how this implementation can be customized for use with different SCA Core Frameworks, CORBA ORBs, coding 

patterns, and target operating systems. Without customization, few projects can benefit from automation. Domain 

specific tools and customizable code generation allow developers, both experienced and inexperienced with the 

SCA, to formulate and produce SCA compliant radios quickly, and with high quality.

patterns, SCA Core Frameworks, and implementation  

languages. Without customization, few projects can  

benefit from automation. Zeligsoft Component Enabler  

is a tool that provides customizable code generation  

of SCA artifacts. Section 6 summarizes this paper  

and explains how Zeligsoft CE can be used today.

2  SCA Compliant Components

This paper focusses on SCA compliant components 

only. SCA compliant components are CORBA-capable 

components that typically execute on a general purpose  

processor. A typical application consists of a combina-

tion of SCA compliant and non-SCA compliant compo-

nents. The latter are usually executed on non-CORBA 

capable processors such as FPGAs and DSPs. Non-SCA 

compliant components will be covered in a later paper.

An SCA compliant component has an external interface, 

consisting of ports and supports-interfaces, for commu-

nication with other components. A component has user-

defined properties and one or more implementations.  

An SCA compliant component is deployed to the  

platform and started by the SCA Core Framework (CF).

1

1  Introduction

The Software Communications Architecture (SCA)  

is a powerful framework for realizing flexible, reusable 

component-based applications. SCA components  

are composable artifacts that can be independently 

deployed, configured and connected together. 

A component provides functionality to other compo-

nents through provides ports, and uses functionality 

from other components through uses ports. Com- 

ponents can be assembled into larger entities by  

connecting their interfaces together through connec-

tors. Components can be individually configured  

according to the role they play in an application.

This paper provides an overview of the code that 

needs to be authored for SCA compliant components 

and how automated code generation for SCA artifacts 

can benefit projects. Section 2 provides a detailed  

description of the parts of an SCA component.  

Section 3 discusses component design consider-

ations, and section 4 describes the advantages and 

challenges designers face when coding SCA compo-

nents. Once these challenges have been outlined,  

section 5 describes how a code generation tool needs 

to be customizable to accommodate different coding  



2

The elements of an SCA component are described 

below.

2.1  Component Implementation

A component implementation is written in a specific 

language and typically compiled for a specific operat-

ing system and processor. Multiple implementations 

can exist for a component, which makes it possible  

to run the application on different physical platforms 

(radios).

The implementation has to implement the elements 

that make up the definition: the ports and the 

attributes. The SCA defines certain rules and behavior 

that the implementation must adhere to. These rules 

enable the SCA Core Framework to deploy and 

configure the component and assemble a set of 

components into a complete application. The following 

need to be present in a component implementation:

2.2  Component Entrypoint 

An implementation needs an entrypoint function.  

This is the function that the CF needs to start the  

component. This function will be called with a number 

of SCA required, as well as user-defined parameters. 

The SCA required attributes provide, among others, 

the CORBA naming context and name that the  

implementation uses to register itself. The user- 

defined parameters (see section 2.5) are the exec-

param parameters as defined on the component  

definition or implementation. User-defined attributes 

can be passed to the entrypoint function (to provide 

information) to initialize the ORB (the –ORBInit param-

eter for example).

The entrypoint function needs to start the CORBA 

object for the implementation and register it in the 

naming service.

Some component implementations might not have an 

entrypoint. Typically these are dynamic link libraries or 

other non-CORBA capable components.

2.3  SCA Interfaces

At the very least the component needs to implement  

the CF::Resource interface. This is the main control  

interface the SCA CF uses to initialize, connect, query 

and configure the component. Figure 1 shows the  

SCA CF::Resource interface.

2.4  Component Ports

Components communicate with other components 

through ports defined by an IDL interface. The com-

ponent implementation needs to create the port  

objects and provide them to the CF when requested 

through the getPort() operation.

Ports are separate CORBA objects that completely 

isolate component internals from the environment. 

These ports provide incoming as well as outgoing 

encapsulation (two-way encapsulation). 

Ports have a conjugation and can be either uses or 

provides ports. A provides port is the server (servant  

in CORBA terminology) and a uses port is the client.  

A uses port must implement the CF::Port interface.  

This interface is used by the CF to create connections  

between different ports. Both uses and provides ports 

must implement the interface used on the port. The 

uses port forwards calls on that interface from the  

inside of the component to the servant. The provides 

port forwards CORBA calls from the environment to  

the internals of the component.

Figure 1: SCA Base Application Interfaces



3

The responsibility of a port is to provide the separa- 

tion between the internals of a component and the  

environment of the component. Component internals 

constitute the functional behavior of the component,  

for example signal processing behavior or control  

behavior. The port translates (marshalls) data, when 

necessary, between the internal format and the for- 

mat expected by the environment (CORBA calls),  

and passes the data on to the receiver.

2.5  User-Defined Attributes

The user-defined attributes of a component are the 

configurable properties of a component. They can, 

for example, be used to configure modulation rates, 

frequencies and so forth.

Properties can be one or more of the types: allocation, 

configure, execparam, factoryparam and test. For SCA 

compliant components only configure, execparam and 

test are relevant. Allocation is relevant for devices and 

factoryparam is relevant for resource factories. They  

are beyond the scope of this paper.

The execparam parameters are used in the entrypoint 

function mentioned in section 2.2. The test parameters 

provide input and expected output to the runTest 

operation of the TestableObject interface.

The configure parameters are attributes that can be 

used as configuration values for the component. The 

application that uses a component can override the de-

fault values for the configuration parameters and in that 

way modify the behavior of the component for this spe-

cialized usage. The parameters can be configured and 

requested through the configure and query operation of 

the CF::PropertySet interface.

3  Design Considerations for  

component implementations

The SCA defines what the component needs to  

implement, but does not specify in detail how the  

implementations should be designed. The SCA cov-

ers the external interface of components. The designer 

has a lot of freedom in the actual implementation of 

the interface. The designer decides how a port or a 

configure attribute should be implemented. The only 

thing the SCA defines is the external behavior of these.

Figure 3: Design One

3.1  Examples of Component Implementations

As an example, consider a component MyComponent  

with a single provides port myPort of interface MyInterface 

as in Figure 2. This component can be implemented  

in a single class MyComponent that implements the  

Resource interface. A class MyComponent_start together 

with a main() function can provide the entrypoint function. 

Class MyComponent can also implement MyInterface  

and hence play the role of the port. See Figure 3.

Figure 2: MyComponent



4

An alternate implementation can instead implement 

the port myPort in a completely different class  

MyInterfaceProvides. MyComponent has an attribute  

of MyInterfaceProvides by the name of myPort. myPort 

forwards all calls to MyComponent for processing by 

the functional aspect of the component. See Figure 4.

will decide on a particular implementation pattern  

and then commit to using that pattern for all compo-

nent implementations. This makes the component  

implementations standard across the waveform and 

easy to understand for the team members (architects,  

designers, testers) working on them.

The examples above are not exhaustive, but they  

illustrate that while component implementations will  

be standard within projects, implementations could 

vary greatly across different projects.

3.2  Component Development Kit

The implementation of a component is executed 

within an environment controlled by an SCA Core 

Framework (CF). This CF is responsible for starting 

the component, configuring and connecting it. SCA 

compliant core frameworks are available privately, from 

commercial third parties and research institutes. These 

Core Frameworks contain base implementations of the 

SCA required interfaces (CF::Resource, CF::Port and 

others). They frequently also contain other classes that 

make it easier for a user to implement components.

An example of this is a class that can manage a  

property with all the different settings that a property 

can have according to the SCA. While strictly not  

required by the CF, a component will need to deal  

with its properties and hence needs to manage them.

These types of classes are often referred to as a 

“Component Development Kit” (CDK). A CDK is a  

utility library provided by the Core Framework vendor 

in order to make development easier. The CDK is  

comparable to the standard C++ library that is used 

by many development projects. The source code for  

a component uses the Component Development Kit 

and therefore depends on it. This does somewhat  

limit the portability of the component from one CF 

implementation to the other as the CDK might not 

be available for the other CF, however, the code that 

needs to be modified is limited, and modifications 

should be trivial.

Figure 4: Design Two

A third implementation modifies this last scenario  

except that myPort does not forward calls to  

MyComponent, but instead handles the data itself.  

This is the same design as in Figure 4, with more  

logic in MyInterfaceProvides.

All three implementations are SCA compliant, but  

they differ in their properties. The first implementa- 

tion is efficient, but has two disadvantages. The first 

disadvantage is that all functionality is in one class. 

The second disadvantage is that it is not possible  

to distinguish between multiple ports with the same 

interface.

The second implementation is better because it  

does have a separation of concern in the handling  

of the port. But, this comes at the expense of one  

extra function call. This is not a great expense if  

the data-copy can be avoided (and it can), as the  

function call is a simple intra-process call.

The third implementation does provide the separation 

of concern by having a port, but it performs the data 

processing in the port. This is a violation of the con-

cept of encapsulation.

Since all designs are compliant with the requirements 

of the SCA, which design to choose depends largely 

on the preference of the user. A typical project team 



5

Alternatively the project could decide to implement its 

own CDK instead of using the CDK provided by the CF 

supplier. This endeavor, if undertaken, would require 

some effort, but will ensure that the application can  

easily be ported to other platforms.

The choice of CDK has a direct impact on the source 

code written for component implementations. Every 

project has to make this decision based on their needs 

and preferences. Hence the code written will differ 

between projects.

4  Implementing an SCA component 

using automated code generation

The code that needs to be written for a component can 

be divided into three pieces: functional code,  

SCA wrapper code and glue code. 

The functional code performs the main job of the 

component. This is typically some form of signal 

processing or high level control code.

The SCA wrapper code is the code that handles the 

interfaces, ports and properties that the component is 

required to implement. Elements such as the entrypoint 

interfaces and ports discussed in Section 2 make 

up the wrapper code. The SCA wrapper code is also 

responsible for handling the CORBA aspects such 

as starting of the ORB and registration in the naming 

service.

Finally, glue code ties functional and wrapper code  

together. The glue code is responsible for forwarding 

the data from the SCA wrapper to the functional pro-

cessing, and performing any data conversion neces-

sary. Similarly, the glue code takes information from  

the functional processing part and passes it on to  

the wrapper code after performing data conversion 

if necessary. As an example, consider a component 

that has a user-defined configure property called  

frequency. The property controls how the component 

performs some of its functional behavior. The property 

can be given a new value through a Human Computer  

Interface. The CF will write this value to the component 

and the SCA wrapper code will receive this value and 

process it. However, the functional code needs to be  

informed of this new value. Informing the functional 

code of the change is part of the glue code. 

Figure 5 graphically depicts the the pieces that make  

up the component. The functional code makes up  

the center. It is wrapped by the dark line representing 

the glue code. The SCA wrapper code completes the 

component appearing on the outside of the glue code.

Both the wrapper code and glue code are SCA-specific 

artifacts. The functional code is not. This paper is con-

cerned with code generation of SCA artifacts, and  

therefore, the rest of this section will focus on wrapper 

code and glue code.

Figure 5: Make up of a component



6

4.1  SCA Code Generation

Coding SCA artifacts is not particulary difficult, but  

it requires detailed knowledge of the SCA standard,  

and sizable attention to details related to the external  

interface of the component. For example, the names  

in the source code need to match the names in the 

component descriptors (XML files) exactly to prevent 

run-time problems from occuring. The human brain  

is a limited device, and is not suited to keep track  

of this detail. Automation however is perfectly suited  

to keep everything synchronized.

Code generation technology has been used in  

software development for almost two decades now.  

Different projects have had different experiences  

with code generation. Some project teams trust  

in code generation as it provides great benefits.  

Other project teams do not want to give control  

of their source code to an automated piece of logic.  

Reasons frequently given for not using code genera- 

tion are the fear that code generation will increase  

code size, negatively impact efficiency and, diminish  

the flexibility of the code.

With the right provisions though, code generation 

stands to benefit SCA projects substantially. Code  

generation of SCA artifacts diminishes the reliance  

on hard to find SCA expertise, it abstracts the intricacy 

of this type of code from developers, and it can main-

tain synchronization between interfaces of components 

in a component application — a task very difficult to  

accomplish manually. Lastly, code generation reduces 

the amount of code developers have to write and  

hence improves efficiency.

What provisions does an SCA code generation  

solution need to posess in order for project teams  

to truly reap the benefits of automation, without  

compromising on their implementation intentions?  

This next section answers this question.

4.2  Customizable SCA Code Generation

In order for an automated tool to successfully generate 

source code for the implementation of a component,  

it must take into account all of the following:

•	 The code patterns adopted by the project

•	 The Core Framework selected

•	 The CDK selected (if applicable)

•	 The CORBA ORB (Object Request Broker)

•	 The operating system selected

All of the items in the list above will influence the  

code. For example, the Windows operating system  

has a different way of starting a component than  

VxWorks. Also, the ACE ORB is different in a number  

of ways from ORBexpress. The source code needs  

to account for these differences. 

Generated code must depend on the choices the 

project team has made and hence code generation 

needs to be customizable. 

Another important benefit of customizable code 

generation is that it allows a project team to generate 

code based on their own proven and efficient patterns.

Tested code can be used to form a template which  

can be applied to the generation of all other compo-

nent code. This way, components will adhere to the 

proven coding paterns of the project, thus significanlty 

reducing risk.

Customizable code-generation provides the project 

team with all the benefits of code generation, while  

allowing them to retain full control of the code that  

is generated.



7

5  Zeligsoft Component Enabler

Component EnablerTM (CE) provides a visual modeling  

environment for the definition of components, com- 

ponent implementations and applications built out  

of components. CE allows the designer to validate 

their model for SCA compliance. CE then generates 

correct-by-construction SCA compliant artifacts based 

on the visual definition.

Component Enabler forms the backbone of the 

development process as it allows a project team 

to capture all SCA related information in an easy 

to understand UML 2.0 based model. The code 

generation feature then takes this information and 

translates it into code, completing the cycle from 

architectural design to implementation.

Zeligsoft CE code generation is controlled by user-

customizable templates. The user can change the 

code generation template and adapt it to their project’s 

needs. The code generated is always synchronized 

with the visual model, thereby eliminating “finger-

trouble”. CE code generation can be used to generate 

wrapper code in Java, C, C++ or ADA. The Zeligsoft 

Professional Services team can adapt Component 

Enabler’s code generation feature to any programming 

language, any CDK, any Core Framework, any CORBA 

ORB and any OS.

Most software development projects use an iterative 

approach to build software. This means that the visual 

model is elaborated in several different steps. When 

the model changes the user can easily generate new 

wrapper code. The wrapper code is separated from 

the function code through the glue code. The inter- 

faces are standardized, which allows for convenient 

iterative workflows.

An SCA compliant component also requires functional 

code and glue code. Functional code can be written in 

a tool of the user’s choice such as the visual modeling 

tools distributed by IBM Rational [3] and I-Logix [4]. 

Other options include pure command-line based devel-

opment or integrated development environments like 

GreenHills Multi [5], WindRiver Tornado [6] or Eclipse 

[7].  CE provides scripting interfaces so that functional 

code builds can be part of the automated process.

The glue code serves to connect the SCA wrapper 

code and the functional code and is typically written  

by hand. This code is added to the wrapper code and 

the functional code and makes information and control 

flow from one to the other. 

6  Summary

SCA components have a standard external interface. 

The component developer needs to implement that  

interface. Different patterns can be used for this.

The code needed for an implementation depends on 

the code patterns mandated by the project. The code 

also depends on the Core Framework, Component 

Development Kit, CORBA ORB and the operating 

system of choice.

Automated code generation increases the efficiency 

of the developers and reduces their dependency on 

SCA expertise. In order to realize these benefits though, 

code generation must be customizable. Customizable 

code generation allows the project team to benefit from 

automation while retaining full control over their code. 

Zeligsoft Component Enabler can provide automated 

code generation that is customizable to the specific 

needs of a project.



8

7  References

1.	 Zeligsoft Component Enabler 

http://www.zeligsoft.com/

2.		WinMerge 

http://winmerge.sourceforge.net/

3.	 IBM Rational 

http://www-306.ibm.com/software/rational/

4.	 I-Logix 

http://www.ilogix.com/

5.	 Green Hills 

http://www.ghs.com/

6.	 WindRiver 

http://www.windriver.com/

7.	 Eclipse 

http://www.eclipse.org/

8.		Component Enabler Best Practices: SCA 

	http://www.zeligsoft.com

9.		Developing SCA Compliant Systems 

	http://www.zeligsoft.com/

 



Zeligsoft, Zeligsoft CE and Waveform Builder are trademarks of Zeligsoft Inc.
All other trademarks are the property of their respective companies.
Version 1.1
Printed in Canada © Copyright 2005.

Contact Information

Website: www.zeligsoft.com

Email: info@zeligsoft.com

Toll-free (North America): 1-800-ZELIGSW (1-800-935-4479)

Direct dial: +1 819-684-9639


